The Scientific Basis for Common Modeling Infrastructure NOAA/CPO MAPP Seminar

V. Balaji

NOAA/GFDL and Princeton University

31 March 2014

Multi-model ensembles for climate projection

Figure SPM.7 from the IPCC AR5 Report.

NRC Recommendations on Common Model Infrastructure

The 2012 NRC Report "A National Strategy for Advancing Climate Modeling" (Google for URL...) made several recommendations:

- Structural uncertainty: key issue to be addressed with common modeling experiments: maintain model diversity while using common infrastructure to narrow the points of difference.
- Global data infrastructure as critical infrastructure for climate science: data interoperability, common software requirements.
- "Nurture" at least one unified weather-climate effort: NWP methods to address climate model biases; climate runs to address drift and conservation in weather models.
- Forum to promote shared infrastructure: identify key scientific challenges, design common experiments, set standards for data interoperability and shared software.

Multi-model ensembles to overcome "structural uncertainty"

Reichler and Kim (2008), Fig. 1: compare models' ability to simulate 20th century climate, over 3 generations of models.

- Models are getting better over time.
- The ensemble average is better than any individual model.
- Improvements in understanding percolate quickly across the community.

Genealogy of climate models

There is a close link between "genetic distance" and "phenotypic distance" across climate models (Fig. 1 from Knutti et al, GRL, 2013).

Earth System Model Architecture

Notional architecture of an Earth System Model. Different models may embody this differently in code.

Diversity of coupling architectures

Alexander and Easterbrook, AGU 2011.

Physical architecture is often model-specific

FMS coupled architecture: fluxes down, state variables up, implicit vertical diffusion (*R* both and down and up).

Earth System Model Architecture

Extending component parallelism to $\mathcal{O}(10)$ requires a different physical architecture!

Serial coupling

Uses a forward-backward timestep for coupling.

Concurrent coupling

This uses a forward-only timestep for coupling. While formally this is unconditionally unstable, the system is strongly damped*. Answers vary with respect to serial coupling, as the ocean is now forced by atmospheric state from Δt ago.

Massively concurrent coupling

Components such as radiation, PBL, ocean biogeochemistry, each could run with its own grid, timestep, decomposition, even hardware. Coupler mediates state exchange.

Concurrent coupling: hybrid approach

Physics and radiation share memory. (Figure courtesy Rusty Benson, NOAA/GFDL).

Knutti et al, revisited

"Genetic health" in the modeling ecosystem? NRC Report: maintain diversity for structural uncertainty, reduce elsewhere.

Summary

- Sharing infrastructure is a hard problem, and not cost-free: should not be assumed to be just axiomatically a good idea.
- Should be done with a purpose: such as scientific reproducibility of simulations, making the process of setting up a MIP lightweight.
- Recognize the diversity of models, of coupling architectures (never say "plug and play"...!), and the value of this diversity.
- Interoperability and shared infrastructure has many aspects: common experimental protocols, common analytic methods, common documentation standards for data and data provenance, shared workflow, shared model components, shared technical layers. (ESDOC, ESGF, ESMF, ...)